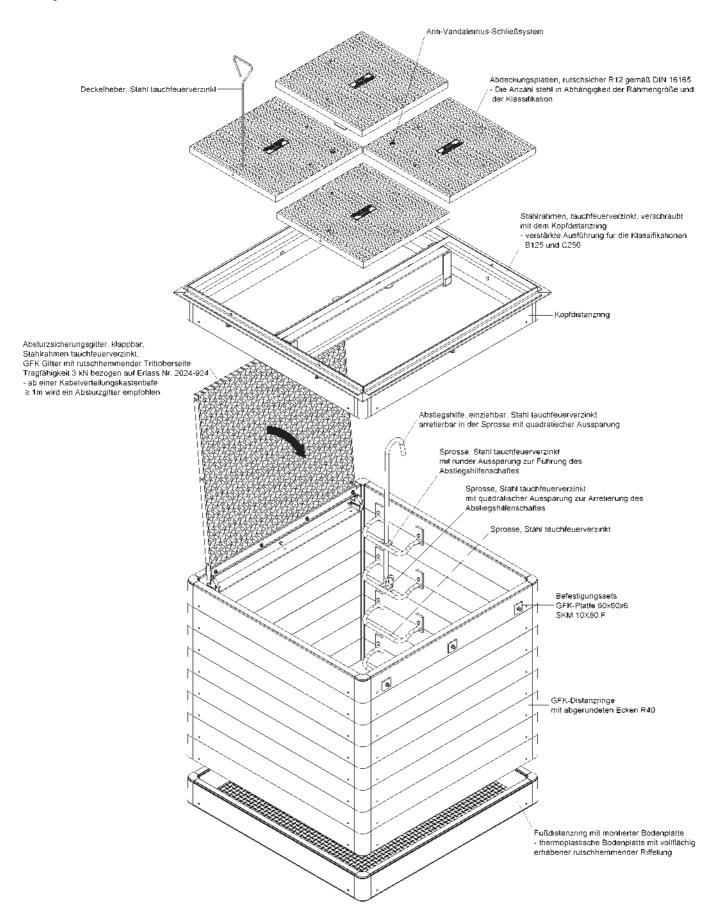


KVK


KABELVERTEILUNGSKASTEN GFK-POLYESTER

ZULASSUNG N° DGOP DTU 023-CHP 076

KABELVERTEILUNGSKASTEN

Systemübersicht

KABELVERTEILUNGSKASTEN

Aufbau und Komponenten eines nachhaltigen Kabelverteilungskasten mit einem formstabilen Faserverbundwerkstoff – GFK

Vorteile des GFK Faserverbundstoffes

Glasfaserverstärkter Polyester ist als wirtschaftlicher Verbundwerkstoff in der Industrie nicht mehr wegzudenken. Unzählige Vorteile vereint dieser Werkstoff in sich. Extreme Bedingungen wie Hitze, Sonneneinstrahlung, Kälte oder aggressive Chemikalien hält dieser Werkstoff, ohne Einbußen seiner Funktionalität, stand.

Hier ein paar überzeugende Eigenschaften und Vorteile GFK für Ihr Bauvorhaben zu wählen:

- geringes Gewicht GFK ist im Vergleich zu anderen Werkstoffen extrem leicht. So ist zum Beipiel ein Kabelverteilungskasten aus GFK 10-mal leichter als ein Kabelverteilungskasten aus Beton. Dies ist optimal für den Transport und für die Handhabung und hilft somit die Transportkosten und die Montagekosten zu minimieren. Die Montage eines GFK Kabelverteilungskastens lässt sich ohne Hebevorrichtung aufbauen und zusammensetzen.
- Beständigkeit hierzu zählen unter anderem:
 - UV- und Witterungsbeständigkeit, Sonnenlicht, Wind, Regen, Schnee sowie Salzwasser beeinflussen diesen Werkstoff nicht
 - hohe Temperaturbeständigkeit (-80°C bis +130°C) garantiert eine Formstabilität
 - korrosionsbeständig GFK kann nicht rosten und ist somit ideal für den Außeneinsatz geeignet
 - · chemische Beständigkeit gegenüber einer Vielzahl an Säuren und Laugen
 - thermisch und elektrisch isolierend, GFK Verbundwerkstoffe haben eine geringe Wärmeleitfähigkeit und sind elektrisch nicht leitend

- Hohe Festigkeit trotz seines vergleichbaren geringen Gewichtes kann GFK mit einer hohen Festigkeit und Stabilität überzeugen.
- halogenfrei
- Leichte Bearbeitung die Bearbeitung dieses Werkstoffes ähnelt dem von Holz. Einfaches Sägen, schleifen oder auszubessern lässt sich problemlos auf der Baustelle erledigen.
- Den GFK Werkstoff zeichnet sich unter anderem durch eine außergewöhnliche Lebensdauer aus.
- Ökobilanz GFK ist zu 100 % recycelbar.

Mechanische Eigenschaften

Stoßfestigkeit	Mindestens Klasse IK10 • Norm DIN EN 62262, mit einer Masse von 5 kg				
Absorption von Wasser	Feuchtigkeitsaufnahme • ISO 62 < 0,3%				
Entflammbarkeit	Keine Flammenausbreitung nach 60-sekündiger Anwendung einer Brennerflamme. Nach Spezifikation SNCF.				
Toxizität von Rauch	• ITC <0,05 (Konventioneller Toxizitätsindex,100-mal niedriger als toleriert)				
Ermüdungstests	- I&P-TL N°4319 (25 kN Kompression bei 3 Hz mit 5500 Zyklen)				
Thermische Alterungstests	Material nach 5500 Zyklen von -30 bis +70°C visuell und mechanisch unverändert				
Biege- und Druckfestigkeitstests	• I&P-TL N°4319 • Norm DIN EN 124-1 • Widerstandsklasse C250, B125, A15				
Physikalisch-chemische Eigenschaften	Der Kabelverteilungskasten ist beständig gegen Unkrautvernichtungsmittel, Isooctan, Petroleum und Mineralöl. • DIN EN ISO 175 • DIN EN ISO 14125 (mechanischer Biegetest).				
UV	Keine Veränderung der Eigenschaften durch ultraviolette Strahlen • ISO 4582 (Bestimmung der Farbänderung) • ISO 4892-2 (künstliche Alterung) • ISO 527-5 (mechanischer Test nach Alterung)				

Schnelle und einfache Montage der Komponenten für eine reibungslose Installation

Die von der Niedax Group entwickelten Kabelverteilungskästen zeichnen sich durch Ihre hohe mechanische Festigkeit bei gleichzeitig geringem Gewicht aus. In Kombination mit einem kompletten modularen Aufbau wird ein hohes Maß an Funktionalität und Montagefreundlichkeit erreicht.

Wir bieten Ihnen, dank einer breiten Produktpalette, die Lösung für ihr Bauvorhaben an, die sich an Ihre technischen Anforderungen anpasst.

Einsatzbereiche der modularen GFK Kabelverteilungskästen

Die Kabelverteilungskästen von der Niedax Group dienen zur Aufnahme von Kabeln. Sie werden von Bahnbetriebs- und Telekommunikationsunternehmen eingesetzt.

Installation

Der Kabelverteilungskasten wird komplett vormontiert geliefert. Auf Anfrage ist dieser auch als Set, bestehend aus Distanzringe, Stahlrahmen und Abdeckungsplatten unmontiert lieferbar. Hier erfolgt der Zusammenbau auf der Baustelle. Dabei ist zu beachten, dass die einzelnen Distanzringe aufeinander verrastet werden müssen.

 Nach dem Ausheben der Baugrube ist eine, unter Berücksichtigung der Bodenverhältnisse, ebene, trag- und sickerfähige Baugrubensohle zu erstellen.

2. Den ersten vormontierten Distanzring als Fußdistanzring mit montiertem Boden positionieren und ausrichten. Jeden weiteren Distanzring aufsetzen und gleichmäßig mit dem jeweils unteren Distanzring verrasten.

 Den oberen Abschluss bildet der Kopfdistanzring mit vormontiertem Stahlrahmen. Diese müssen mit einem geeigneten Hebemittel auf den letzten Distanzring vollflächig aufgesetzt und verrastet werden.

4. An entsprechenden Positionen die Anschlüsse für die Leerrohre mit einer Lochsäge in die Wand des Kabelverteilungskastens schneiden. Der Fuß-sowie der Kopfdistanzring dürfen hierbei nicht durchgebohrt werden.

5. Die Baugrube bündig bis zur Oberkante des Stahlrahmens auffüllen und mit einem Vibrationsstampfer verdichten.

6. Die GFK-Abdeckungsplatten werden mit einem Deckelheber in den Rahmen eingesetzt.

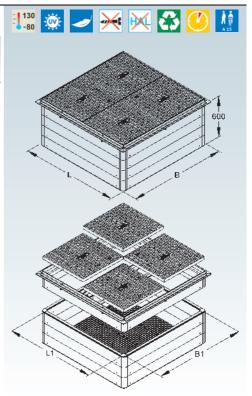
GFK-Kabelverteilungskasten

mit abgerundeten Ecken, Kassifikation A15

Modell-Nr.	Breite B außen	Länge außen L	lichte Breite B1	lichte Länge L1	EAN	Gewicht in kg pro 100 St.	Kleinste VPE	
	mm	mm	mm	mm				
KVK 600.600-A15	600	600	500	500	244652	8200	1 St.	
KVK 900.900-A15	900	900	800	800	244669	13400	1 St.	
KVK 1300.1300-A15	1300	1300	1200	1200	244621	23000	1 St.	
KVK 1300.2000-A15	1300	2000	1200	1900	244638	32700	1 St.	
KVK 1300.2600-A15	1300	2600	1200	2500	244645	41300	1 St.	
KVK 700.2100-A15	700	2100	600	2000	244676	27300	1 St.	
KVK 1100.1100-A15	1100	1100	1000	1000	244614	19000	1 St.	

der Stahlrahmen ist verschraubt mit dem Kopfdistanzring und die Bodenplatte mit dem Fußdistanzring

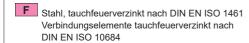
Die VPE besteht aus:


- 4 Distanzringe
- 1 tauchfeuerverzinkter Stahlrahmen

Abdeckungsplatten, rutschsicher R12 gemäß DIN 16165 - Die Anzahl steht in Abhängigkeit der Rahmengröße und der Klassifikation

1 thermoplastische Bodenplatte mit vollflächig erhabener rutschhemmender Riffelung

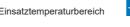
Lieferung: komplett vormontiert


Weitere Tiefen, Klassifikationen und Zubehör auf Anfrage. Auf Anfrage unmontiert lieferbar.

Klassifizierung nach Einsatzbereichen nach DIN EN 124

	Klasse	Prüfkraft	Gruppe
À ∰ A 15	A15	15 kN, entspricht 1,5 Tonnen Prüflast	1 Verkehrsflächen, die ausschließlich von Fußgängern und Radfahrern benutzt werden. Auch für Grünflächen geeignet.
B 125	B125		2 Gehwege, Fußgängerzonen und vergleichbare Fächen, PKW-Parkflächen und PKW-Parkdecks.
C 250	C250		3 Bordrinnenbereich, Parkplätze und unbefahrene Seitenstreifen und Ähnliches. Bordschlitzrinnen sind immer Gruppe 3.

Schnelle Montage



Belastungsklasse A15

Belastungsklasse B125

Niedax GmbH & Co. KG
Asbacher Str. 141 | D-53545 Linz/Rhein
Postfach 1286 | D-53541 Linz/Rhein
Tel: +49 (0) 2644/5606-0
info@niedax.de | www.niedax.com